INDIAN SCHOOL MUSCAT

CLASS X

SECOND PERIODIC TEST 2022

Marking Scheme -MATHEMATICS

Q.NO.	Answers	Marks (With split up)
	SET A	
1.	(2k+3)/(k+1) K= -2	1+1
2.	X ² +13x+42	1+1
3.	Rahul is correct; all equilateral triangles are similar	1+1
4.	Median equally divides the opposite side.	1 1
5.	∴ ΔABC ~ ΔPQR (By SAS similarity criterion) In ΔPOQ, DE OQ ∴ $\frac{PE}{EQ} = \frac{PD}{DO}$ (basic proportionality theorem) (i) In ΔPOR, DF OR ∴ $\frac{PF}{FR} = \frac{PD}{DO}$ (basic proportionality theorem) (ii) From (i) and (ii), we obtain $\frac{PE}{EQ} = \frac{PF}{FR}$	1
	∴ EF QR (Converse of basic proportionality theorem)	1
6.	Zeroes are -3 and -1: verification	2+2
7.	a) h=12m b)x = 10.5m; similarity of triangles	2+2

	SET B	
1.	$6a/(a^2+9)=1$; a= 3	1+1
2.	X ² +3x+ 2	1+1
3.	X=7; AA Δ ABC ~ Δ PQR	1+1
4.	Δ ABC ~ Δ PQR	1
	$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP}$	
	$\angle A = \angle P$, $\angle B = \angle Q$ and $\angle C = \angle R$	1
	Δ AMC ~ Δ PNR (SAS similarity)	
	$\frac{\text{CM}}{\text{RN}} = \frac{\text{CA}}{\text{RP}}$	1
5.	In $\triangle POQ$, $\triangle B \parallel PQ$ $\therefore \frac{OA}{AP} = \frac{OB}{BQ} \qquad (Basic proportionality theorem) \qquad (i)$ In $\triangle POR$, $\triangle C \parallel PR$ $\therefore \frac{OA}{AP} = \frac{OC}{CR} \qquad (Basic proportionality theorem) \qquad (ii)$ From (i) and (ii), we obtain $\frac{OB}{BQ} = \frac{OC}{CR}$ $\therefore BC \parallel QR \qquad (By the converse of basic proportionality theorem)$	
6.	Zeroes are 2 and 1; verification	2+2
7.	a) H= 150m; h= 60m	2+2
	b)24m	
	SET C	
1.	(-5-a)/(a-5) = 4; a= 3	2+2
2.	X ² +x-6	2+2
3.	<a= 100°;="" aa<="" td=""><td>2+2</td></a=>	2+2
4.	It is given that $\triangle ABC \sim \triangle PQR$ We know that the corresponding sides of similar triangles are in proportion. $\therefore \frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR} \dots (1)$ Also, $\angle A = \angle P$, $\angle B = \angle Q$, $\angle C = \angle R \dots (2)$ Since AD and PM are medians, they will divide their opposite sides.	1
	∴ BD = $\frac{BC}{2}$ and QM = $\frac{QR}{2}$ (3) From equations (1) and (3), we obtain $\frac{AB}{PQ} = \frac{BD}{QM}$ (4) In \triangle ABD and \triangle PQM, \angle B = \angle Q [Using equation (2)] $\frac{AB}{PQ} = \frac{BD}{QM}$ [Using equation (4)] ∴ \triangle ABD ~ \triangle PQM (By SAS similarity criterion)	1
	$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$	

5.	In $\triangle ABC$, $\triangle BD$ $\triangle BE$ $\triangle BE$ (Basic proportionality Theorem) (i) In $\triangle BAE$, $\triangle BD$ $\triangle BE$ $\triangle B$	1
	$\frac{BE}{EC} = \frac{BF}{FE}$	1
6.	Zeroes are-4 and -3; verification	2+2
7.	a) H= 200m; h= 80m b) 12m	2+2